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Abstract

In this paper we describe the IOP model of interoperation and its use
in developing interactive applications. Using this as a basis we have de-
veloped the IMaude library of modules for defining interactive applications
based on the Rewriting Logic language Maude. This is an important step
towards making Maude specifications more accessible to non-experts, and
thus advancing the possibility for formal executable specifications to have
more impact.

The IOP interoperation model is asynchronous message passing follow-
ing the actor model of distributed computation. The IOP framework pro-
vides several built in actors, including an actor that supports interactive vi-
sualization using theJLambda language.

There are two aspects to developing an interactive tool using the IOP
framework: (1) adapting input/output to allow the tool to communicate as
an IOP actor; and (2) specifying and programming an appropriate actor-like
behavior for the tool. For the Maude actor, (1) is the Maude wrapper that
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redirects standard input/output and formats messages; and (2) takes the form
of extending a set of Maude modules called IMaude.

This approach has been used in several formal modeling applications
based on rewriting logic. We use the Pathway Logic application as a running
theme to motivate system design and to illustrate its use
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1 Aims

In order for formal tools to be more generally useful it is important that the tools
can interact with one another via simple, well defined, semantically meaningful
communication interfaces. In addition it is important for a formal tool to provide
natural user friendly means of interaction.

The Maude system [26, 8] is a high performance system based on rewriting
logic with many advanced features. Currently the main means of interacting with
Maude is via a command line interpreter. Typically, users that want to connect
Maude to other tools or provide alternative display mechanisms, must do some-
thing ad hoc, for example with Perl scripts, Tcl/Tk, etc.

The IOP project is aimed at developing an infrastructure for allowing tools
to interact and interoperate. It was motivated by the specific aim of making it
possible for Maude to communicate with other tools, including other instances of
itself, web resources, visualization tools, theorem provers such as PVS [9] and
SAL [6], as well as to read and write files, and execute shell commands. The
IOP interaction model is that of actors [3, 1] communicating via asynchronous
message passing, with the IOP registry serving as local post office. IOP comes
with a basic set of actors including a System actor, wrappers that encapsulate
Maude and PVS as actors, a Graphics 2D actor, communications actors that sup-
port sockets, file system access, and program execution, and a GUI interface to
the system, that allows the user to communicate as if an IOP actor. Additional
actors can be added quite easily. For meaningful integration of a system as an IOP
actor, the tool needs to be adapted to send and receive IOP messages in addition
to being integrated into the messaging system with a wrapper. For a system with
a programmable ‘read-eval-print’ loop such as Lisp or Scheme based systems, or
Maude, this is straightforward, and such systems can be programmed to have dif-
ferent actor behaviors according to an applications needs. We have developed a
set of Maude modules called IMaude (Interactive Maude) that serves as a starting
point for defining Maude actor behaviors. IMaude is interactive in the sense that
rewrite computations are interleaved with communications with the environment,
and IMaude’s state persists across communications.

The two systems, IOP and IMaude, combined provides the Maude program-
mer with a much richer modeling environment, with support for developing visu-
alization and animation of Maude specifications in interesting ways, for exporting
Maude modules to other tools (based on other formalisms) for alternative analyses
and visualizations, and for developing notions of session state that can be saved
and resumed. Using the communication actors as a go-between, the Maude ac-
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tor or any other tool adapted to become an IOP actor, can talk to any tool that is
capable of interacting via an Internet socket connection or the file system.

Several substantial applications have been based on IMaude: an implementa-
tion of the Mobile Maude design [19]; a formal model of goal-based autonomous
systems, instantiated to a simple rover [33]; an executable model for Strand Space
protocol specifications [21]; and the Pathway Logic Assistant [32]. The latter is
the most substantial application and has been an key driving force in the develop-
ment of both IOP and IMaude.

The IOP manual, binaries for Linux and Mac OS X, and setup instructions are
available at [27]. The IMaude code is available at [15].

The structure of this paper is as follows. In§ 2 we describe the IOP architec-
ture. In§ 3 we describe the basic actors, rules for communication, and explain
how to incorporate additional actors.

The Pathway Logic Assistant is the first and most substantial application using
IOP, serving as motivation and a test bed for the design and development of the
IOP interface and the constituent actors. In§4 we discuss some of the function-
ality required of the Pathway Logic Assistant and sketch a typical use scenario
to motivate some of the design of IMaude. In§ 5 we describe IMaude, begin-
ning with a discussion of requirements and overview of the design. The key data
structures are described as well as basic rules for interaction. We illustrate how to
specify a Maude actor behavior as an extension of IMaude, by describing one of
the library modules included in IMaude. In§ 6 we continue the discussion of the
Pathway Logic Assistant, illustrating how some of the interactions in the scenario
are supported by rules for PLA behavior and the evaluation ofJLambda expres-
sions for interactive graphics. We discuss related work in§ 7. We conclude with
a discussion of future directions in§ 8.

2 The Architecture

IOP’s design is based on the actor model of distributed computation [1]. IOP con-
sists of a pool of actors that interact with one another via asynchronous message
passing. The pool of actors is dynamic, it may grow or shrink as time goes by.
Actors can be initial actors, created at startup, or be they can created by another
actor already in the system in response to some event, such as an actor receiving a
message, or reacting to some external action, such as a connection being made to
a socket. New actors can also be created by explicitly asking the System actor to
do so, by sending it a start request. Though strictly speaking this is just a special
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case of an actor being created in response to an event. The collection of actors
created at startup is easily configurable and new actors can be designed and added
to the system.

An actor in IOP is typically a UNIX style process that has been registered
with the system according to a simple procedure. Part of this registration process
involves allocating three FIFOs, or UNIX style named pipes, and redirecting the
actor’sstdin , stdout andstderr file descriptors to these special files [34].

However, not all actors are single processes, some consist of two processes.
For example, the actors that correspond to formal reasoning tools such as Maude
and PVS, usually consist of two processes: the process running the tool, and a
wrapper actor acting as a go-between for the tool and the underlying message
system. Similarly the Graphics 2D actor is also a two process actor, one process
running the Java virtual machine, and the other a C wrapper process also acting as
a go-between.

There is no restriction on the language used to write an actor’s script or exe-
cutable. Some are written in C, some are written in Java, some are written in Perl.
One simply chooses the appropriate language for the desired task or function that
the actor is supposed to perform. Actors can be single threaded or multi-threaded,
each according to its needs. They can even consist of several processes written
in different languages. For example, the Graphics 2D actor that provides Maude,
and any other actor that wishes it, with a graphical toolkit, is written in Java, and
requires a thin C process wrapper to interface with the FIFOs. In§ 3.5 we describe
the process by which new actors can be incorporated into the system.

Apart from the dynamic pool of actors in the system, IOP consists of three
independent processes that interact: themain process that creates and configures
the system; the registry; and a GUI front end. Invoking IOP from the command
line results in the following startup procedure taking place. The first process, be-
ing themain of IOP, parses the command line arguments, and creates the registry
or System actor, the GUI actor, and any other actors that have been requested. A
typical IOP process configuration is shown in figure 1. After startup themain
acts mainly as a signal handler, ensuring clean and graceful shutdown. The reg-
istry keeps track of the current actors, and maintains the lines of communication
between these actors. The GUI front end, pictured in figure 2, provides the user
with an easy means of sending messages to any of the actors in the system. The
upper part can be used to compose messages to be sent to any of the IOP actors.
A file of previously composed messages can be loaded, and message edits can be
saved. The lower part displays any output from the actors that is not inter-actor
communication (errors or messages to the user).

6



An Actor

An Actor

An Actor

The Registry
An Actor

A Two Process Actor

Figure 1: An IOP Process Configuration

The registry maintains a list of all the actors that are registered with it. It
performs several functions, and maintains three lines or forms of communication.
The three forms of communication are:inter-actorcommunication, messages sent
from one actor to another;meta-actorcommunication, actors notifying the reg-
istry of the birth or death of actors; andinterfacecommunication, communication
between the GUI front end and the registry and other actors. Each type of commu-
nication has a dedicated infra-structure that supports it. In the case ofinter-actor
communication, each registered actor in the system has three FIFOs, in/tmp/ ,
associated with it. For each actor in the system there are three dedicated reg-
istry threads, one to monitor each FIFO that is associated with the actor’sstdin ,
stdout andstderr file descriptors. The registry also has two FIFOs (again in
/tmp/ ) that are used in various meta-communications, such as the registering of a
newly created actor, or from an actor politely informing the system of its imminent
demise. All files in/tmp/ incorporate into their name the unique process identi-
fier of themain process associated with them, hence multiple IOP’s on the same
machine do not interfere with one another. Finally the registry communicates with
the GUI front end by using two socket connections established at startup.

Inter-actor communication is purely ASCII text, and is implemented in two
layers, theuser layer, and thetransport layer. In the transport layer a message
consists simply of a line of text representing a number (i.e an integer in base ten),
followed by that specified number of bytes. The user layer, implemented on top
of the transport layer, consists of the address of the target actor, the address of the
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sending actor, followed by the body of the message, each on a new line:

maude
graphics2d
(invoke graph "redisplay")

This same message can be sent from the GUI by selectingMaude as the destina-
tion, and sending the text(graphics2d (invoke graph "redisplay")) .
Either way the message is transmitted in the transport layer as the sequence of
bytes:

45\nmaude\ngraphics2d\n(invoke graph "redisplay")\n

Simple libraries implement the user layer on top of the transport layer, and
allow for reliable cross platform and architecture independent communication.
For example in Java this can be achieved using the following static method

public static void sendActorMsg(OutputStream dest, String body){
String message = "" + body.length() + "\n" + body;
try{

dest.write(message.getBytes("US-ASCII"));
}catch(Exception e){ IO.err.println(e); }

}

declared in theActorMsg class of the packageg2d.util , as described in§ 3.3.

3 The Actors

The IOP system currently comes with several built-in actors. They are the System
actor, the GUI actor, the Graphics 2D actor, the Executor actor, the Filemanager
actor, the Socketfactory actor and wrappers to encapsulate Maude and PVS as IOP
actors.

The first seven (excluding PVS) may all be launched with the system at start
up by the commandiop -a . Only the first two are launched by default, using
the commandiop . Only the first iscompulsoryand it alone is launched using
the commandiop -n . Alternately, any number of instances of each individual
actor (other than the System actor) may be explicitly started up by requesting the
System actor to do so.

For the purpose of this paper the crucial actors are the System actor, the GUI
actor, the Maude actor, and the Graphics 2D actor. The remaining actors, are
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described in [17, 28], and no longer play a central role. In fact we expect them to
be superseded by the Graphics 2D actor, see§ 3.3. We describe the System actor,
the GUI actor, the Maude actor, and the Graphics 2D actor each in turn.

3.1 The System Actor

The first major difference between the version of IOP described in the paper [17]
and the current version is the elevation of the registry to the status of an actor
in the system. This was done to enable the starting pool of actors to be easily
customizable, either by directly sending the System actor, as the registry is now
known, a request to eitherstart or stopan actor. Or by describing the desired
actors at startup in the.ioprc file, see the IOP manual for precise details [28].
The System actor also responds to aselectrequest, which results in the specified
actor being chosen as the currently selected actor in the GUI front end. Again,
such a request can also be made from the.ioprc file. These three commands
make up theconfiguration interfaceto the System actor. There is also a new
registration interfaceprovided to make it relatively easy to program actors that
spawn new actors. We will discuss theregistration interfacein more detail in
§ 3.5.

The registry is the same UNIX process as the System actor, so in this sense
they are synonymous. However there are more facets to the registry than just
its role as the System actor, so we will not use the two terms interchangeably.
Preferring the term registry to emphasize its multifaceted nature, when indeed we
are talking about more than just its role as an actor in the system.

3.2 The GUI Actor

The role of the GUI front end, depicted in figure 2, is purely as a graphical user
interface, allowing the user to interact with any actor in the system. The GUI
consists, from top to bottom, of a menu bar, a button panel, the input window,
and the output window. There are multiple redundancies in the design of this GUI
interface. Anything that can be done with the menu bar, can also be done without
it. Either by control sequences, or in the case of sending messages, by using the
button panel. The menu bar can be consulted to establish, on a particular operating
system, the corresponding control sequences.

The input window is a rudimentary text area allowing the user to format, and
send messages to any particular actor in the system. The text sent to the chosen
actor can either be a single line of text, the selected or highlighted text, or the
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Figure 2: The IOP GUI

whole buffer. Selecting the target actor is done by using the choice widget in
the right side of the button panel. This can also be done programmatically in the
.ioprc file, or by messaging the System actor.

The text in this text area can be loaded in one of three ways: manually us-
ing either the menu bar, or the control sequence associated with file loading; by
specifying the full path of the file as the first line in the user’s.ioprc file; or
automatically at startup, by naming the fileinput.txt , and placing it in the di-
rectory where you want to execute theiop command. This last method is usually
the most practical. One has a directory with various files one is using for the cur-
rent project, and amongst these is theinput.txt file, that serves a role similar
to a rudimentarymakefile .

The output and error window is a non-editable text area that displays the error
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streams of all the actors in the system, as well as any actor message that is sent
to an actor whose name is not recognized by the system. Typically any message
addressed to theuser actor will show up here, as long as the system is configured
so that there is nobona fideactor by that name.

3.3 The Graphics 2D Actor

The second major difference between the version of IOP described in the pa-
per [17] and the current version is the stable integration of the Graphics 2D actor.
The Graphics 2D actor consists of two intertwined components: A control lan-
guage, and a class hierarchy.

The control language is an untyped Scheme-like lexically scoped interpreted
language, calledJLambda [14, 20], that provides a runtime interface to the Java
class library, as well as some specific classes that make up the second component.
The language makes very heavy use of Java’s built in reflective capabilities. It is
designed to be efficient and expressive enough to enable full and faithful use of
any built in Java classes.

The Java class hierarchy, called theGlyphish hierarchy [29, 11], is inspired
by Joel Bartlett’s now deprecatedEzd package [4], and Java’s 2D [25] imple-
mentation, that providesJLambda with sufficient built in classes to effectively
construct, at runtime, any desired interactive graphical object.

TheGlyphish hierarchy has been designed both with several benchmark ap-
plications in mind, and with architectural generality. The hierarchy makes heavy
use of theJLambda language infrastructure. Closures1 in particular, provide
a rich language in which to describe control flow, event listeners, and even both
static and non-static methods of dynamically created classes.

The Graphics 2D Actor, here calledgraphics2d , is simply an entry point to
the interpreter of theJLambda language. Thus the generic request takes the form

graphics2d
<sender>
<jlambda expression>

which simply results in the Graphics 2D actor evaluating the supplied expression
in a separate thread of execution. There is no built in response to such a request. If
a request is desired, then it should be coded into the form of the expression to be

1A closure is a lambda expression paired with an environment binding free variables to their
values at the point where the lambda was returned as a value.

11



evaluated. For example if one sends the following two messages to the Graphics
2D actor from the GUI front end

(user
(define respond

(lambda (actor msg)
(sinvoke "g2d.util.ActorMsg"

"sendActorMsg"
java.lang.System.out

(concat actor
"\ngraphics2d\n"
msg
"\n")))))

(user (apply respond "user" "hey!"))

the first will result in no response, while the second will subsequently respond
with

user
graphics2d
hey!

and will be displayed in the GUI’s output and error window. The static method
sendActorMsg is described in§ 2.

While the Graphics 2D actor was originally designed to process and display
graphical information, its functionality far exceeds this. Since theJLambda lan-
guage provides an interpreted interface to the entire Java class libraries, most
things, if they can be done in Java, can be done by suitable requests to the Graph-
ics 2D actor. We plan to produceJLambda libraries that make the remaining
communication actors largely redundant. Though there is nothing to stop the user
from doing this themselves.

3.4 The Maude Actor.

The Maude actor consists of two processes, one running the Maude executable,
while the other, called thewrapper, acts as an intermediary between Maude and
the registry. Any error messages Maude emits are, like all other actor’s error mes-
sages, redirected to the error and output text area of the GUI front end. Maude’s
output is interpreted by the wrapper, and then translated to a format acceptable to
the underlyinginter-actor communication system. The process of interpretation
consists of replacing symbolic control characters such as\n , \r , \t , \" , and\\

by the appropriate control sequences themselves.
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3.5 Writing and Incorporating New Actors

Incorporating new actors into the system is relatively simple, especially if the new
actors themselves do not require the ability to create other new actors. Typical
examples of these actors would be new formal reasoning tools. Incorporating
new actors that can themselves create other actors requires either following the
required protocols necessary formeta-actorcommunication with the registry, see
§ 2 for a description of the various forms of communication, or using the newer
registration interfacewith the System actor.

We will deal with the simple case of actors that do not need to procreate, before
covering the more complex case. A new actor will, invariably, be incorporated
into the system by astart request to the System actor,§ 3.1, either directly or
at startup in the.ioprc file. Consequently, we begin by looking at this step in a
little more detail.

A start request to the System actor takes the form:

system
<sender>
start
<name> <executable> <argv[1]> ... <argv[N]>

In response to such a request, the system first finds a unique new actor name based
on <name>. If <name> is unique as is, then this is the name chosen. Otherwise
the addition of the smallest numeric suffix that makes the name unique is chosen.
It then creates, and registers with the system, an actor whose executable is named
by <executable> , whose argument array isargv , argv[0] is set to be the
actor’s unique name, call itnameN. The creation process involves four simple
steps. Firstly, one must create three FIFOs, one each for standard in, out and
error. These FIFOs are created in/tmp/ , and are typically called

iop_<pid>_<nameN>_IN
iop_<pid>_<nameN>_OUT
iop_<pid>_<nameN>_ERR

respectively. Here<pid> is the process identifier of the mainiop process. Sec-
ondly, a new process isfork ed off, and it’s standard in, out and error streams are
redirected to the corresponding FIFOs. Thirdly, the new process then executes

execvp(executable, argv);
//error reporting goes here
exit(EXIT_FAILURE);
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whereargv is as described above. Finally, the new actor is registered with the
system. This involves, amongst other things, creating separate threads to monitor
both out and error streams of the newly created actor.

As a consequence of this, writing an actor involves paying attention to the
name one is christened with, i.e.argv[0] , and using the appropriate message
format when writing to standard out, namely the transport layer described in§ 2.
In the transport layer a message consists simply of a line of text representing a
number (i.e. an integer in base ten), followed by that specified number of bytes.
Due to historical reasons the text that follows is enclosed in parentheses, with the
parentheses being included in the byte count.

The above describes how the System actor creates an actor. If an actor, other
than the System actor, needs to create another actor, the process described above
is modified slightly in two places. Firstly, the actor doing the creating must obtain
a unique name for the newly created actor. Secondly, the System actor must be
notified of it’s creation, so that messages to and from the new actor can be moni-
tored. This can either be done using the low level meta actor communication, or
else by using the newerregistration interfacewith the System actor.

Theregistration interfaceof the System actor involves three new requests: an
uniquenamerequest, anenrollmentrequest, and anunenrollmentrequest. The
uniquenamerequest allows an actor to obtain, from the System actor, a new
unique name for it to use in christening a newly spawned actor. This newly
spawned actor can then be registered with the system using anenroll request,
the request must contain the necessary information for the system to incorporate
it into its communication infrastructure. A spawned actor can exit the system by
sending the System actor anunenroll request. For more details on the nature of
these three requests the reader is advised to consult the current IOP user man-
ual [28].

4 Pathway Logic Assistant Requirements

Pathway Logic [10, 23, 24, 32] is an approach to modeling biological systems
as formally-based executable specifications, using formal methods tools to ana-
lyze these models. Specifically, cellular networks—collections of rules describing
processes that transmit information (signal transduction) or transform chemicals
(metabolism) are modeled using Maude.

A Pathway Logic model consists of a collection of Maude modules speci-
fying the structure and components of a cell; giving rules describing how sig-
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nals are propagated in order to control cellular processes such as transcription,
metabolism, proliferation, or self-destruction; and defining one or more initial
states (called dishes) to study. The Maude modules are organized in four layers:
(1) sorts and operations, (2) components, (3) rules, and (4) dishes. The ‘sorts and
operations’ layer can be thought of as the ‘logical’ signature, declaring the main
sorts such as proteins, DNA, and cellular locations, subsort relations and construc-
tors. The components layer specifies specific proteins and other chemicals. The
rules layer contains rewrite rules representing biological mechanisms. The dishes
layer specifies initial states of interest. An initial state consists of a cell in a super-
natant mixture containing signaling ligands. A cell is divided into compartments
such as cell membrane, cytoplasm, nuclear membrane, and nucleus. A cell speci-
fication determines the proteins and other chemicals of interest contained in each
compartment.

For such a model to be useful to biologists, it is crucial to have an interactive
visual representation that can be used to navigate and query the model. A few
examples of what a biologist might want to do are:

• List the dishes that are available to study.

• Display the network of signaling reactions for a given dish.

• Locate a particular network element, a reaction or reactant.

• Ask for more information about a particular network element.

• Formulate and submit a query about pathways in the network.

The Pathway Logic Assistant (PLA) was designed to meet the requirements
listed above and many others. From an architectural point of view, PLA is a
collection of IOP actors and external tools. The reasoning engine and driving
force of this collection of actors is the IMaude based Maude actor (PLA-M). The
user interacts with PLA via the visual representations provided by the Pathway
Logic Viewer (PLA-V), and instance of the Graphics2D actor.

To illustrate how a user might explore a Pathway Logic model and to indicate
some of the interactions that occur amongst the the actors (and other tools) we
sketch a small scenario. The scenario is based on a model of activation of Rac1,2 a
small signaling protein. Rac1 functions as a protein switch that is “on” (activated)
when it binds the nucleotide triphosphate GTP (notatedRac1-GTP), and “off”

2Also known as Ras-related C3 botulinum toxin substrate 1 p21-Rac1.
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Figure 3: The PLA Viewer.
A screen shot of the PLA Viewer with the model, three ways to activate Rac1,
loaded.

when it binds the hydrolysis product GDP, (notatedRac1-GDP). The network of
signaling reactions for a given dish is represented as a Petri net where places
represent signaling components, for example proteins in a particular state and
location relative to the cell, and transitions are instances of signaling rules. The
scenario starts after the user has asked IOP to create an instance of PLA for a
specific model, see figure 3.

In the scenario,A⇒ B requestshould be read asA sends the messagerequest
to B. PLA-V is the viewer, andPLA-M is the PLA Maude actor.

1. User ⇒ PLA-V : What dishes are available?Typically such a request would
instigated by a click on dish menu button.

2. PLA-V ⇒ PLA-M: Send me a list of dish names.

3. PLA-M ⇒ PLA-V : The dish names are ...The message will actually be a
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JLambda expression whose evaluation will result in the displaying of a
choice menu containing the list.

4. PLA-V ⇒ User : A choice menu listing dishes.

5. User ⇒ PLA-V : Display the network for the dish3ways2ActRac . Here the user
selects the appropriate item,3ways2ActRac , in the choice menu.

6. PLA-V ⇒ PLA-M: Send me the network for3ways2ActRac . The action associ-
ated with the choice menu results in the sending of this request toPLA-M.

7. PLA-M ⇒ PLA-V : A graph G representing the network for3ways2ActRac .
This is achieved byPLA-M computing the network relevant to the dish
3ways2ActRac and its graph representation.

8. PLA-V ⇒ Dot : Layout G. The PLA-V actor construct the graph, and then
requests that it be annotated with layout information.

9. Dot ⇒ PLA-V : Gwith layout.

10. PLA-V ⇒ User : An interactive display ofG.

11. User ⇒ PLA-V : Find the node,N, representing activatedRac1. This is done by
selecting the node, by name, from a list of all node names.

12. PLA-V ⇒ User : The display ofG is now centered onN.

13. User ⇒ PLA-V : Make activation ofRac1 a goal. This is done by the user
clicking on the nodeN and selecting the goal option. In response to this
PLA-V sets an annotation ofN to remember its goal status, then (in the next
two steps) informsPLA-M, and redisplays the graph.

14. PLA-V ⇒ PLA-M: Make activatedRac1 a goal inG

15. PLA-V ⇒ User : The graph is redisplayed withN colored to confirm its goal
status.

16. User ⇒ PLA-V : Find a path to selected goals.The user selects the find path
option from the query menu, or clicks one of the findPath buttons in the
toolbar.

17. PLA-V ⇒ PLA-M: Find a path to the selected goals inG.
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18. PLA-M ⇒ LoLA: ExecuteT. T is a LoLA model checker task produced by
PLA-M translating the network and selected goals. Communication with
LoLA is done using the underlying filesystem. The languageJLambda
interpreted by the Graphics 2D actor serves as a go-between here.

19. LoLA ⇒ PLA-M: A list of transitions achieving the goals.Using this information
PLA-M represents the transition list as a subnet of the current network

20. PLA-M⇒ PLA-V : A graphG1 representing the subnet.

21. PLA-V ⇒ Dot : LayoutG1.

22. Dot ⇒ PLA-V : G1with layout.

23. PLA-V ⇒ User : An interactive display ofG1.

5 Interactive Maude

Interactive Maude (IMaude) is a collection of Maude modules that support writing
interactive Maude applications. Although, IMaude can be used in Maude alone
for simple command line interaction, the intended use is as the basis for speci-
fying the behavior of Maude actors within the IOP framework. In this setting a
Maude actor can interact not only with the user, but also with other actors, includ-
ing actors providing file and socket management services, other Maude actors,
actors providing graphical display services, and other formal tools such as model
checkers, theorem provers, and so on. Applications are developed by extending
the core IMaude system with data structures and rules describing Maude actor be-
havior specific to the application. IMaude is available from [15]. It comes with
several library modules, developed to facilitate interaction with other IOP actors
(filemanager, sockets, executor), and a couple of small example applications to
play with.

In §5.1 we discuss requirements for Maude actors generalizing the PLA re-
quirements, and give an overview of the IMaude design. In§5.2 we briefly sum-
marize the MaudeLOOP=MODEmodule, which provides the mechanism for inter-
action. In§5.3 we describe the key data structures used to represent Maude actor
state. IMaude extends the data structure modules with three modules for process-
ing input: IMAUDE-STATE, SCHEDULER, andREWRITE. The moduleIMAUDE-STATE

defines the rules for managing initializing, examining and resetting state. It is also
discussed in§5.3 The rules for scheduling interactions, defined in theSCHEDULER
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module, are described in§5.4. Finally, in§5.5 we describe theREWRITEmodule,
treating this as an example of developing a simple Maude actor for interactive
rewriting.

We assume the reader has some familiarity with the Maude language [8].

5.1 Requirements and Overview

Implementing an actor behavior requires

1. an interactive loop that maintains state between interactions; and

2. managing asynchronous interactions with other actors.

Requirement 1 is the most problematic as the Maude interpreter is stateless by
design (for efficiency). IMaude uses theLOOP-MODEmodule provided by Maude
specifically to support writing user interfaces. An alternative would be the use of
socket foreign objects that are supported in the most recent Maude release. Al-
though, sockets are somewhat cleaner and more elegant thanLOOP-MODE, there
are two reasons they are not used in the current version of IMaude: sockets were
not available when IMaude was developed, andLOOP-MODEprovides support for
parsing and printing Maude terms that is not yet available using sockets. The ob-
jective of supporting very general behavior, implies that an IMaude based Maude
actor will have many features of an interpreter. Thus additional requirements in-
clude

3. a reusable collection of state components that supports a wide range of be-
haviors

4. extensible data structures for state components along with functions for
managing state (initialization, update, retrieval, reset)

5. support for debugging

The need to support asynchronous interaction with multiple actors suggests a
need for task management analogous to a virtual machine. Thus a Maude actor’s
state should include processing state (current and pending tasks), an environment
to remember parameters and computed values, and a place to store a log for de-
bugging. IMaude provides two key data types (sorts) to support representation
of an actors state: an extensible sortEVal to represent data values, and a sort
Request to represent tasks.
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Specifically, an IMaude state has the following components: control; requests;
wait4s; environment; and log. Thecontrolcomponent contains a description of the
request currently being processed or the constantready , indicating that no task is
currently being processed, Pending tasks are partitioned into two classes: queued
requests, stored in therequestscomponent; and suspended tasks waiting to handle
incoming messages, stored in thewait4scomponent. Wait4 tasks play the role of
either call-backs or service listeners. Theenvironmentcomponent contains a set
of entries mapping identifiers to elements ofEVal . Thelog component is a list of
log items. It supports debugging by allowing events and status to be recorded as
requests are processed, without interrupting the processing. Additional support for
debugging is provided by commands for browsing and resetting state components.

There are two forms of interaction with IMaude: commands and requests.
Commands are typically submitted directly by the user and are used to support
debugging. Commands are handled upon receipt, and generally result in a reply
to the user (printed on the terminal or IOP’s output window). Requests maybe
submitted by the user, sent in messages by other actors, or generated in the process
of handling some other request. Requests are queued and processed when enabled,
possibly resulting in messages being sent to other actors.

IMaude provides rules for interpreting commands, rules for dispatching in-
coming messages, as well as rules for selecting requests from the request queue
to process. Use of requests to break processing into small tasks together with the
wait4s and requests components of the state provide the support for responsive
asynchronous interaction with other actors.

Finally, the IMaude moduleREWRITEdefines rules to handle requests for ma-
nipulating terms by reducing to canonical form, applying functions or rewrite
rules. Since defining requests is the main task in developing an IMaude applica-
tion, description of this module will also serve to illustrate the extension process.

In the following we describe the data structures making up the IMaude state
and the scheduler in more detail. To be self-contained we begin with an introduc-
tion to theLOOP-MODEmodule of core Maude.

5.2 TheLOOP-MODEModule
TheLOOP-MODEmodule shown below is the mechanism used to support building
user interfaces by providing a basic read-eval-print loop.

mod LOOP-MODE is
protecting QID-LIST .
sorts State System .
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op [_,_,_] : QidList State QidList -> System [ctor special(..)] .
endm

A LOOP-MODEsystem has the form

[inQ,S,outQ]

whereinQ (input queue) andoutQ (output queue) are lists of quoted identifiers
andS is the system state. In what follows we will adopt the usual Maude practice
and abbreviatequoted identifierto qid.

The stateS is constructed from application specific data structures and is
rewritten using application specific rules. The state persists between input/output
actions until the loop is exited.inQ is a stream that receives input directed to the
loop from standard input andoutQ corresponds to a stream connected to stan-
dard output. The loop mode reader converts the input byte stream into a qid list
using the Maude tokenizer (each qid represents a token), and conversely the out-
put qid list is converted to a byte stream by Maude. Input qid lists can be parsed
into Maude data structures using themetaParse function and conversely, Maude
data structures can be converted to qid lists using themetaPrettyPrint func-
tion. Thus loop mode can easily function as a traditionalread-eval-printloop.

To develop a user interface usingLOOP-MODEone needs to define theState

data type and rules for processing input from the input stream, possibly modifying
the state and generating output (see [8] Chapter 11). In the case of the IMaude ac-
tor, IOP messages are received in the input system component and sent by placing
them in the output system component.

5.3 IMaude Data Types

As mentioned above, the key sorts used to represent IMaude state areEVal and
Request . EVal is essentially a tagged union of sorts, thus making it easy to
extend. Injection functions are used to form a tagged union rather than simply
making sorts such asQidList subsorts ofEVal to avoid confusion in, and possi-
ble collapse of, the sort hierarchy. IMaude defines twoEVal subsorts:QVal and
TermEVal . Elements ofQVal are of the formql(toks) wheretoks is a qid
list, andql is the injection function, i.e.QVal is the image of the sortQidList .
Elements ofTermEVal are of the formtm(modname,term) wheremodnameis
a qid naming a module,term is the metarepresentation of a term in that module,
andtm is the injection function. There is also a functionshowEVal that is used
to produce printed representations (a qid list) of elements ofEVal .
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EVal can be extended by adding new subsorts. To do this an application
developer just needs to declare the subsort, and injection function to tag elements
and define theshowEVal function on the new subsort.

An element of the sortRequest has one of the two forms

req(reqid,eval,reqQ) or creq(reqid,qids,eval,reqQ)

wherereqid is a qid identifying the request,eval is the parameter, an element
of EVal , qids is a list of qids, andreqQ is a list of requests, possibly empty,
to be used in determining how to continue when the request is processed. We
say a request is serving as a continuation if it appears in a wait4 or in the request
list of another request. Thecreq form is used when it is necessary to separate
parameters supplied to a request serving as a continuation at continuation time
(its qids parameter), from the parameter supplied at request creation time (its
eval parameter). The functionsupplyPars(req,toks) adds the qidlisttoks

to second parameter of the requestreq . In the case of a request of the form
req(reqid,eval,reqQ) this is only defined ifeval has the formql(qids) .

An IMaude state has the form

st(control,wait4s,requests,environment,log)

In the following describe each of the five components.

The control component. Thecontrolcomponent (sortControl ) of an IMaude
state reflects what IMaude is currently doing. An element ofControl is either
the constantready or of the form

processing(req)

indicating that a requestreq is currently being processed.

The wait4scomponent. Thewait4scomponent is a set (sortWait4Set ) of el-
ements (sortWait4 ) of the form

wait4(aname,toks,reqQ) ,

whereaname is the name of an actor from whom IMaude expects a message,
andreqQ is a list of requests that specifies what IMaude should do when such an
expected message arrives. The qid list,toks , indicates the reason for waiting, and
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is currently just used for debugging purposes. When a message arrives from the
named actor, the message tokens are added to the qid list parameter of each request
in reqQ , using the functionsupplyPars , and the instantiated requests are queued
for processing. As mentioned above, an element of the wait4s component can play
the role of a call-back, a standard technique used in many programming languages
for asynchronous communication, or the role of a server instance listening for
input on a connection.

The requestscomponent. The requestscomponent is a list of requests (sort
RequestQ ) waiting to be scheduled.

The environmentcomponent. Theenvironmentcomponent is a set (sortESet )
of entries (sortEntry ) used to store values for later use. An entry has the form

e(etype,ids,eval)

whereetype , a quoted identifier, is the entry type, andids , a qid list, identifies
the entry within the type, andeval is the value to be stored. Together, the pair
etype andids are expected to uniquely identify the entry.

There are several functions for manipulating entry sets, including:

• getEntry(es,etype,ids) is the entry identified by the pair(etype,ids)

in the entry setes , or an error value if there is no such entry.

• removeEntry(es,etype,ids) is the entry set obtained by removing the
entry ines identified by the pair(etype,ids) , if any.

• addEntry(es,etype,ids,eval) is the entry set obtained by first re-
moving any entries identified by(etype,ids) from es , and then adding
the entrye(etype,ids,eval) .

where in the above,es has sortESet , etype has sortQid , ids has sortQidList ,
andeval has sortEVal .

The log component. Finally, thelog component is a list (sortLog ) of log items
(sortLogItem ). Each log item has the form

log(id,toks,eval) .
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One use of log component is to record status of interactions with other actors, and
other use is to record a trace of interactions.

The IMAUDE-STATEmodule provides rules defining commands to initialize,
examine, and reset components of the state. The rule[ini] initializes the control
to ready and leaves the remaining components empty.

op init : -> System .
*** inQ ctl wait4s reqQ es log outQ
rl[ini]: init => [nil, st(ready, none, nil, none, nil), nil] .

There are commands to display, via a message to the user, the current value of
a state component, as well as commands to reset, to their initial value, each of the
different state components. For example

• (show control) prints the control component,(reset control) re-
sets it toready .

• (show eset) prints the environment,(reset eset) resets it tonone .

There are also commands to show or remove specific entries.

5.4 IMaude Behavior

The SCHEDULERmodule provides rules to control the processing of input other
than commands. The first qid of the input queue is used to classify the input type
as a command, request, or a message expect from a known actor. The boolean
function isReq is used to determine if a qid is a request identifier. When a new
request is defined, an axiom forisReq must be added so it will be properly han-
dled.

The following rules handle input other than commands. If the first qid of the
input is a request identifier, the input qids are turned into a request that is appended
to the request queue. This is handled by the rule[read.input] .

crl[read.input]:
[token InQ, st(ready,wait4s,reqQ,es,log), OutQ]
=>
[nil,

st(ready,wait4s,(reqQ,req(token,ql(InQ),nil)),es,log),
OutQ]

if isReq(token) .
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wheretoken has sortQid .
If the first qid of the input is the name of an actor with a wait4 entry, the

wait4 entry is removed, and its requests component is appended to the request
queue after supplying the input qids to each request. This is handled by the rule
[schedule.wait4] .

rl[schedule.wait4]:
[aname InQ,

st(ready,(wait4(aname,toks,reqQ’) wait4s), reqQ, es,log),
OutQ]
=>
[nil,

st(ready, wait4s,
(reqQ, supplyPars(reqQ’,aname InQ)), es,log),

OutQ ] .

whereaname has sortQid , andreqQ’ has sortRequestQ .
If there is no pending input, a pending request can be scheduled. The boolean

functionenabled is used to determine if a request is enabled, in the context of a
wait4 set. For example interactions with each known actor can be sequentialized
by disabling a request that might result in sending a message to an actor for whom
there is already a wait4 entry.

The rule[schedule.request] applies when there is no pending input. The
next request to schedule is determined by evaluating

findEnabled(wait4s, reqQ, nil)

which returns a pair consisting of the first enabled request inreqQ , if any, and the
rest of the requests.

crl[schedule.request]:
[nil, st(ready, wait4s, reqQ, es,log), OutQ]
=>
[nil, st(processing(?req), wait4s, reqQ’, es,log), OutQ]
if (?req @ reqQ’) := findEnabled(wait4s,reqQ,nil) .

where?req has sortRequest .
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5.5 Rewriting

TheREWRITEmodule defines requests for querying modules loaded into Maude.
Terms can be reduced and rewritten using the default interpreter or by specify-
ing a list of rules to apply. The results are saved in the environment for further
processing. Also, functions from the object module can be applied to arguments
stored in the environment. In all cases the request continuation, with no additional
arguments provided, is queued once the environment is updated.

The REWRITEmodule makes essential use of the MaudeMETA-LEVEL (see
[8] Chapter 10), including the meta-representation of terms, and especially the de-
scent functions such asmetaParse , metaReduce , metaRewrite , metaApply ,
andmetaPrettyPrint , that provide efficient access to the syntactic and seman-
tic functions of Maude that manipulate terms and modules.

Naming things in the environment. Thesetqc , letc , andapplyc requests
provide a means for storing qid lists and terms in the environment.3

• (setqc vname qids) adds an entrye(’setq, vname, ql(qids))

to the environment.

• (letc vname modname sort <exp>) attempts to parse the qid list that
results from reading and tokenizing<exp> , in the module named bymodname

as an element of sortsort . 4 If successful, the resulting term is reduced to
canonical form,res , and an entry

e(’let,vname,tm(modname,res))

of typelet , with identifiervname, and valuetm(modname, res) is added
to the environment.

• (applyc modname vname fname arg-1 ... arg-n) applies the func-
tion namedfname to arguments stored (aslet s) inarg-1 . . .arg-n in the
module named bymodname, reducing the application to canonical form,
res . The result is saved invname, i.e., an entry of typelet , with identifier
vname, and valuetm(modname, res) is added to the environment.

3Corresponding user commands named by omitting the finalc are also provided.
4From the users point of view,<exp> , appears as the term would if typed to Maude in the con-

text of the named module, while from the IMaude point of view, it appears in the input component
of aLOOP-MODEsystem as a qid list.
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As an example we show the code for theletc request. It begins with equations
specifying thatletc is a request identifier, and thatletc requests, with suffi-
ciently many arguments—they must have at least a value name, a module name
and a sort—are always enabled. Requests that are ill-formed because they have
too few tokens just remain in the request queue.

eq isReq(’letc) = true .
eq enabled(wait4s,

req(’letc,ql(vname modname sort toks),reqQ’))
= true .

The rule[letc] specifies how to process aletc request. First the qid listtoks

is parsed using the descent functionmetaParse , and bound to the variableres? .
If parsing succeeds,(res? :: ResultPair) , the result,getTerm(res?) ,
is reduced using the descent functionmetaReduce , and this result is added to the
environment using

addEntry(es, ’let, vname, tm(modname,t)) .

If parsing fails then the environment is unchanged.

crl[letc]:
[nil,

st(processing(req(’letc,ql(vname modname sort toks),
reqQ’)),

wait4s,reqQ,es,log), OutQ]
=>

[nil,
st(ready,wait4s,(reqQ,reqQ’),es’,log),
OutQ ]
if res? := metaParse([modname],toks,sort)
/\
t := (if (res? :: ResultPair)

then getTerm(metaReduce([modname],getTerm(res?)))
else ’’0.Qid fi)

/\
es’ := (if (res? :: ResultPair)

then addEntry(es, ’let, vname, tm(modname,t))
else es fi ) .
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There are a number of alternative for the behavior ofletc in the case of
failure. An ill-formed request could be removed from the request queue and a
log item describing the failure could be stored. Either way, using the commands
to examine the state, the user could detect the problem. If the request is simply
dropped, there would be no record of the ill-formed request attempt. In the case
of failure to parse, an error report could be logged, instead of silently failing.

Rewriting terms in the environment. The rewritec andapplyrulesc re-
quests provide a means for rewriting a term stored in the environment and saving
the result.

• (rewritec nat vname [flag]) rewrites the term stored with etype
let and identifiervname, using at mostnat rewrites (rule applications).
The result is stored back invname. If flag is present the Maudefrewrite
strategy is used rather than the default rewrite strategy.

• (applyrulesc vname rname rids) tries to apply each rule named in
rids to the term stored invname. The result is storedrname . Rules that
don’t apply are simply skipped.

Using the Rewrite IMaude application. We conclude the discussion of the
REWRITEmodule with a small scenario illustrating its use. For this purpose, we
define a small moduleDYNAMIC-LIST that defines a list data structure whose
elements can be rewritten.

mod DYNAMIC-LIST is
sort Elt .
ops a b c : -> Elt [ctor] .
rl[ab]: a => b .
rl[bc]: b => c .
rl[ca]: c => a .

sort DList . subsort Elt < DList .
op nil : -> DList [ctor] .
op _;_ : DList DList -> DList [ctor assoc id: nil] .

var e : Elt . var l : DList .
op tail : DList -> DList .
eq tail(e ; l) = l .
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eq tail(l) = nil [owise] .
endm

The element sortElt has three members:a, b, andc . These elements can be
thought of as three states of a finite state machine, where the rewrite rules define
the transitions

a → b → c → a

After loading the above module, IMaude and the REWRITE module into
Maude and initializing the loop state (using the commandloop init . ) we
can use the rewrite requests to query theDYNAMIC-LIST module.

To begin we define a list to work with using theletc request.

(letc l0 DYNAMIC-LIST DList a ; b ; c)

This results in an entrye(’letc, ’l0, tm(’DYNAMIC-LIST,l0T)) being
added to the entry set component of the state, wherel0T is the meta representation
of the lista ; b ; c . (For the curious, it is’_;_[’a.Elt,’b.Elt,’c.Elt] .)
Now we can rewrite this list, say for two steps, and examine the result using the
show entry command.

(rewritec 2 l0)
(show entry let l0)

The result isc ; b ; c , as the default rewrite strategy rewrites the first compo-
nent twice. We can get the tail of the list using theapplyc request.

(applyc DYNAMIC-LIST l0cdr tail l0)

Now thel0cdr entry contains (the meta representation of)b ; c . Theapplyc

request is especially useful if the term you are rewriting is large and you want
to rewrite for s few steps, examine a small part of the result, and then continue
rewriting.

We can force rewriting of list elements other than the first using theapplyrulesc
request. For example the rule labeledbc only applies to the second list element.
Thus

(applyrules l0 l0 bc ca)
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results in the lista ; c ; c . We can also request that rewriting use the position
fair rewrite strategy by adding a flag to the end of the rewrite request.

(letc l1 DYNAMIC-LIST DList a ; b ; c)
(rewritec 3 l1 t)

This results inb ; c ; a being stored inl1 , each list element having been
rewritten once.

6 The Pathway Logic Assistant as a Maude actor

The Pathway Logic Assistant (PLA) is the first and most substantial application
using IOP, serving as motivation and a test bed for the design and development
of the IOP interface and the constituent actors. In this section we show how the
scenario of§ 4 is realized by PLA. As mentioned in§ 4, PLA is a collection of
IOP actors and other tools that work together to provide interactive visualization
and analysis of the PL models. The main players are the Maude actor,PLA-M,
whose behavior is defined as an extension of IMaude, andPLA-V whose behavior
is defined by aJLambda library interpreted by the Graphics 2D actor.

Because of the restricted nature of the PL rules, we use Petri nets as the basis
for visualization and efficient analysis. In particular given a specific initial state,
the Maude rules are specialized to rule instances reachable from the initial state
and the resulting specialization is transformed to a Petri net. The transistion cor-
responding to a rule instance has a ‘pre-occurrence’ corresponding to each com-
ponent of the rule left hand side and a ‘post-occurrence’ corresponding to each
component of the rule right hand side. An occurrence is analogous to the notion
of species used in many biological interaction and reaction data bases. It speci-
fies the underlying compound, for example a protein, its modifications, such as
binding withGDPor GTP, and its location, such as cell membrane or cytoplasm.

Below we show some of the IOP messages corresponding to elements of the
scenario of§ 4 as well as some of the entries stored byPLA-M and fragments of
JLambda code that definePLA-V behavior for the Graphics 2D actor.

We start with the line

6. PLA-V ⇒ PLA-M: Send me the network for3ways2ActRac . The action associ-
ated with the choice menu results in the sending of this request toPLA-M.

which becomes the IOP message
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(maude graphics2d displayPetri 3ways2ActRac)

sent to theMaude actor from thegraphics2d actor. Upon receipt, the PLA-
M listener for messages from the Graphics 2D actor queues adisplayPetri

request with dish name parameter3ways2ActRac . As an example we show the
rule that defines the response to adisplayPetri request.

crl[displayPetri]:
[nil,

st(processing(req(’displayPetri, ql(dname toks),reqQ’)),
wait4s,reqQ,es,log),

OutQ]
=>

[nil,
st(ready,

wait4s,
(reqQ, req(’topetri, ql(dname),

req(’petri2graph,ql(gname dname),
req(’graph2graphics2d,ql(gname),reqQ’)))),

es’,
log),

OutQ]
if ctr := getGlobalCounter(es)
/\ es’ := incGlobalCounter(es)
/\ gname := qid("graph" + string(ctr)) .

Processing such a request rewrites to a sequence of requests, the first is atopetri

request passing the dish namedname as a parameter. This request has contination
a petri2graph request which is passed the dish name andgname, specifying
what to name of the created graph. This request has a further continuation, namely
a graph2graphics2d request with the graph name as a parameter.

To process thetopetri request, the Maude actor generates the Petri net cor-
responding to the dish named3ways2ActRac (defined in the query layer module)
and saves it in the environment as the entry

e(’petri-net, gl(’3ways2ActRac), tm(’QQQ,pnetT))

where’QQQ is the module that composes the parts of a PL model with auxiliary
modules defining Petri net and operations for manipulating them, andpnetT is a
term meta-representing the computed Petri net. The Maude actor then processes
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thepetri2graph request, computing a graph whose nodes are the Petri net oc-
currences and rules, and whose edges represent the pre- and post- occurrence
relationships. The graph is stored as an entry of the form

e(’petri-graph, gl(’graph0), dg(...))

wheredg(...) is the injection of the graph into the sortDGraphEVal a subsort
of EVal introduced to be able to store graphs as entry values. Finally the Maude
actor processes thegraph2graphics2d , which results in a message sent to the
Graphics 2D actor requesting it to construct and display an interactive visual rep-
resentation of the graph.

(graphics2d maude plgraphexp)

This corresponds to the scenario line

7. PLA-M ⇒ PLA-V : A graph G representing the network for3ways2ActRac .
This is achieved byPLA-M computing the network relevant to the dish
3ways2ActRac .

The messageplgraphexp is aJLambda expression that first defines a function
makeGraph that takes an empty (Java) graph object and adds nodes and edges to
construct the specific graph of interest, and then that calls the functionPLgraph

with this function as an argument.
The following shows fragments of theplgraphexp expression for the3ways2ActRac

model.

(let ((nodearray (mkarray g2d.graph.IOPNode (int 25)))
(makeGraph (lambda (graph)

(seq
(apply addONode graph nodearray "EGF" "EGF-out" "0"

"init" "true")
...

(apply addRNode graph nodearray "1" "1.EgfR.on" "4"
"true")

...
(apply addUniEdge graph nodearray (int 0) (int 4)

"true")
...

))))
(apply PLgraph "graph0" "PetriNet for 3ways2ActRac" ""

"false" makeGraph)
)
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The functionaddONode creates an occurrence node, annotates it with a short la-
bel for display, such asEGF, a longer label that also specifies location, such as
"EGF-out" , a unique identifier, such as"0" , and a status indicating whether
the occurrence is in the initial state, and adds it to the graph. The function
addRNode creates a transition/rule node, annotates it with short and long labels
(such as"1" or "1.EgfR.on" ) and a unique identifier (which is"4" for the rule
"1.EgfR.on" ) and adds it to the graph. The functionaddUniEdge adds a unidi-
rectional edge from its source argument ((int 0) ) to its target argument ((int

4) ). (The node identifiers are stored as strings, but converted to integers to be able
store nodes in an arraynodearray , and to find them when making edge links.)
The edge from an occurrence to a rule says that the occurrence is a premise of the
rule.

ThePLgraph function defines the behavior of thegraphics2d actor corre-
sponding to the lines 8-10.

8. PLA-V ⇒ Dot : LayoutG. The PLA-V actor constructs the graph, and then
requests that it be annotated with layout information.

9. Dot ⇒ PLA-V : Gwith layout.

10. PLA-V ⇒ User : An interactive display ofG.

The first argument toPLgraph , "graph0" , is the identifier that the Maude and
Graphics 2D actors agree to use to refer to this graph. The next two arguments
are used as title and subtitle for the display. The argument"false" is a flag
indicating whether or not the graph is a subgraph (subgraphs have fewer defined
interactions).

When thePLgraph function is applied, a new graph object is created and
filled in by giving it to themakeGraph function. Then the graph is exported in
dot syntax,dot is invoked to add layout information, the graph is updated with
with this information, and now can be displayed in a PL window also created as
part of the execution ofPLgraph . Figure 3 of§ 4 shows the resulting display.

Graph nodes are made interactive by defining event listeners for them. For
example an occurrence node can have a listener that pops up a menu offering
items such as"Show info" or "Set goal" . Each item has an associated action,
represented as a closure— a lambda expression closed in an environment binding
the free variables of the lambda expression. An action is executed by applying the
closure to two arguments: the interacting object, and the event generated by the
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user interaction. For example the"Set goal" action is defined by the following
lambda expression

(lambda (me event)
(seq

(apply setGoal graph me)
(sendMessage "maude" (invoke graph "getUid") "setGoal"

(getAttr me "nid" "0") "true")
(invoke view "repaint") ) )

Scenario lines 13-15 correspond to calling the"Set Goal" action associated
with the node labeledRac1-GTP. Evaluation of the expression(invoke graph

"getUid") returns the name given the graph by the Maude actor when the graph
was created.

13. User ⇒ PLA-V : Make activation ofRac1 a goal. This is done by the user
clicking on the nodeN and selecting the goal option. In response to this
PLA-V sets the annotation ofN to remember its goal status, informsPLA-M,
and redisplays, in the next two steps.

14. PLA-V ⇒ PLA-M: Make activatedRac1 a goal inG

15. PLA-V ⇒ User : The graph is redisplayed withN colored to confirm its goal
status.

A PLA graph is made interactive by associating actions with the graph as a whole,
using tools and menus associated to the graph to provide user access, as shown
in Figure 3 of§ 4 shows the resulting display. For example requests to find a
path are addressed to a graph, rather than a node. Lines 16-17 of the scenario
are realized by the “Find LoLA Path” item of the “query” menu, or by by the
“findPath (LoLA)” button in the toolbar.

16. User ⇒ PLA-V : Find a path to selected goals.The user selects the find path
option from the analysis menu.

17. PLA-V ⇒ PLA-M: Find a path to the selected goals inG.

The closure associated to the “Find LoLA Path” item is thefindLolaPathClosure

whose definition (as part of alet naming action closures for the graph interac-
tions) is shown below.
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(findLolaPathClosure
(lambda (self event)

(apply sendMessage "maude" (invoke graph "getUID")
"displayLolaPath")

)) ; findLolaPathClosure

graph is bound in the closure environment to the graph for which this closure is
an action. Calling this closure results in an IOP message being sent to the Maude
actor, from the graph (using the unique identifier specified at the graph creation
time), containing the requestdisplayLolaPath . ThePLA-M rule for processing
this request corresponds to the scenario described in step 18-19.

18. PLA-M ⇒ LoLA: ExecuteT. T is a LoLA model checker task produced by
PLA-M translating the network and selected goals. Communication with
LoLA is done using the underlying filesystem. The languageJLambda
interpreted by the Graphics 2D actor serves as a go-between here.

19. LoLA ⇒ PLA-M: A list of transitions achieving the goals.Using this information
PLA-M represents the transition list as a subnet of the current network

First the Maude actor computes a LoLA representation,net , of the Petri net un-
derlying the graph (and specialized to the specific goals), and a LoLA represen-
tation,task , of the formula corresponding the “find a path reaching these goals”
query. The actual interaction with LoLA is accomplished by sending the follow-
ing message to the Graphics 2D actor

(graphics2d maude (apply lolaRequest net task reqId maude))

and adding

wait4(’graphics2d, ’askLola gname,
creq(’lolaReply,nil,ql(gname pname toks),reqQ’))

to thewait4 set in the IMaude state. The continuation request has parameters
gname, the name of the graph being analyzed (the specialized petri net and speci-
fied goals) andpname, the name to be used to store the path returned by LoLA.

Fragments of theJLambda definition of the functionlolaRequest are shown
below. This takes the place of building a proper wrapper and making LoLA an
IOP actor.
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Figure 4: A pathway leading to Rac1 activation.
Ovals colored green are goals, in this case the activated form of Rac1.

(define lolaRequest (net task reqId requestor)
...

//write net and task to files for LoLA to read
...
(invoke (sinvoke "java.lang.Runtime" "getRuntime")

"exec" lolaCommand))
...

// wait for lola to finish
// then read file written by LoLA call it resPath

...
(apply sendMessage requestor "graphics2d"
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(concat retcode " " resPath))
)

In theinvoke form, LoLA is called with command line arguments telling it where
to find the net and task input files, and where to write its output file (all contained
in lolaCommand ). When the LoLA process is finished the output file is read,
concatenated with the result code and sent to Maude (requestor ). The message
is handled by thelolaReply task sitting in thewait4 set. In particular a Petri
net is assembled from the rules used in the path found by LoLA, the corresponding
graph is computed and sent to the Graphics 2D actor and displayed in the same
way that the top level Petri net is handled. The path for activation of Rac1 found
by LoLA is shown in figure 4.

7 Related work

There are two aspects to the IOP and IMaude work. One is moving from a declar-
ative functional language to aninteractivesystem while retaining a clean seman-
tics, and the other isinteroperationof tools. Although we have not emphasized the
semantics aspect, we are relying on the basic ideas of interaction semantics for ac-
tors [2, 22] to give semantics to Maude actors, without modifying the underlying
Maude system. An alternative approach is the idea of Functional Reactive Pro-
gramming (FRP) [13], where a functional language such as Haskell is extended
with constructs such as Monads, Arrows, and I/O to support interaction. The basic
Haskell Library can then be extended with primitives for graphics (HGL), robot
controllers, and so on. The IOP and IMaude approach is to provide a mechanism
for communication with tools or processes providing additional services rather
than extending Maude.

The ToolBus [7] is a software coordination architecture. The ToolBus utilizes
a scripting language based on process algebra to describe the communication be-
tween software tools, providing synchronous and limited broadcast forms of com-
munication. To integrate a tool, an adapter must be written that translate between
the internal ToolBus data format and the data format used by the individual tools,
and adapts the tool to the ToolBus communication protocols. The IOP coordina-
tion model is simply asynchronous message passing taking strings to be the basic
communication data. The IOP wrapper for non-interactive tools such as Maude
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or PVS is a rudimentary form of adaptor for input/output byte streams. Build-
ing on the metalogical expressiveness of Maude, IMaude provides the ability to
program coordination scripts as desired. Any other tool or language interpreter
with a read-eval-print loop, such as Scheme or Lisp, could be used as well. The
real work of interoperation is developing representations that support semantically
meaningful exchanges amongst tools. The Pathway Logic Assistant is a good ex-
ample. Maude representations of Petri nets have been defined to allow Maude to
communicate with tools for Petri net analysis, and representations of graphs and
JLambda expressions have been defined to allow Maude to cooperate with the
Graphics 2D actor to support interactive graphical representations of Petri nets.

Several frameworks for interoperation of BioInformatics tools have been de-
veloped. The Systems Biology Workbench (SBW) [12], is a modular, broker-
based, message-passing framework for communication between applications that
aid in research in systems biology, using a common representation syntax, the
SBML markup language (http://www.sbml.org ). SBW comes with a sim-
ulator, plotter, adaptors for external simulators, and a generic simulation-control
GUI interface. SBW is now part of the BioSpice project, a DARPA sponsored
project developing infrastructure for integrative Biology [16, 31]. BioSPICE uses
Java Beans component technology for tool integration, and a graphical work-
flow language to describe flow of data through analyzer tools. BioBike (formerly
known as BioLingua)[18, 30] is a programmable knowledge environment that en-
ables interoperation of bioinformatics tools by providing a frame-based represen-
tation for diverse data sources and a scripting language (based on Common Lisp)
for traversing data and describing different combinations of tool application.

8 Conclusions and the Future

We have described IOP, a communications infrastructure that manages a dynamic
collection of actors including: basic communications actors, a Graphics 2D actor,
and actors obtained by adapting existing tools to the communication infrastruc-
ture. Currently both Maude and PVS have been adapted. We have also described
the IMaude set of modules that support defining application specific behaviors for
the Maude actor. The IOP-IMaude combination is being used heavily in several
ongoing Maude specification projects including the Pathway Logic Project, the
Strand Spaces project, and the Formal Checklists project.

Future work includes interoperation with other tools such as SAL [5], im-
provements and extensions of IMaude, and developing additionalJLambda li-
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braries to support common interactions.
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